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We solve a classical analog of the quantum traversal time problem. The classical diffusion equation is
modified to control the amount of time spent by a particle in a specified region of space. The ‘‘clocked’’
diffusion equation is solved for an ensemble of Brownian particles confined in a closed volume. Long term
behavior of the exposure time distribution is analyzed. A general recipe for including time control into fieldlike
equations of motion describing evolution of a physical system is proposed.@S1063-651X~96!11206-X#

PACS number~s!: 05.40.1j, 73.40.Gk

I. INTRODUCTION

Over the years, there has been considerable interest in the
general problem of determining the amount of time,t, a
physical system, whose motion is described by partial differ-
ential equations rather than in terms of classical trajectories,
spends in a specified region of spaceV. Until recently, the
attention was focused on quantum mechanics, in particular,
on the tunneling time problem~for reviews, see@1#!. In Refs.
@2,3# similar techniques were applied in order to understand
the occurrence of superluminal velocities in the propagation
of classical electromagnetic waves@4,5#. In this paper we
extend the approach to classical stochastic systems and, in
particular, to the case of Brownian motion. Common to all
mentioned problems is the apparent absence of any informa-
tion aboutt in the initial ~Schrödinger, Maxwell, diffusion,
etc.! equation of motion. We will provide a simple general
recipe for building in the exposure~traversal! time control
and solve the ‘‘clocked’’ diffusion equation for Brownian
motion in a closed volume. The paper is organized as fol-
lows. In Sec. II we introduce a clocked diffusion equation
describing the distribution of exposure times,Q(x,tut), for
an ensemble of Brownian particles. In Sec. III we formally
solve the equation by expandingQ(x,tut) in the eigenfunc-
tions of the corresponding eigenvalue problem. In Sec. IV
we investigate analytical behavior of the eigenvaluesEn and
eigenfunctionsfn . In Sec. V we demonstrate that the ana-
lytical properties ofEn andfn impose correct behavior on
Q(x,tut) and obtain for the latter a simple series representa-
tion. In Sec. VI we use the steepest descent method to study
the long time behavior ofQ(x,tut). We also provide a nu-
merical test of the theory. Section VII contains our conclu-
sions.

II. EXPOSURE TIME CONTROL
AND THE CLOCKED DIFFUSION EQUATION

Consider an ensemble of Brownian particles confined in a
~one dimensional! volume @2L,L#, e.g., put in a plugged
test tube of a length 2L. The concentration of particles,
Q(x,t), satisfies the diffusion equation@6#

]Q~x,t !

]t
5D

]2Q~x,t !

]x2
, ~2.1!

whereD is the diffusion coefficient. For a given initial dis-
tributionQ(x,0), Eq.~2.1! allows one to determine the con-
centrationQ(x,t) at any t.0. However, a more detailed
analysis may be required. Let a region@2a,a# inside the
tube be exposed to the light or radiation. One can think of
several ways in which physical properties of the particles
may be affected by exposure to radiation or light. If, for
example, a particle is coated in photoemulsion, the light will
darken its color in proportion to the time it spends in the
illuminated region. For live bacteria moving chaotically in a
liquid medium the length of exposure to harmful radiation
will determine whether a bacterium is healthy, sick, or dead.
In both bases, full statistical information about the state of
the particle is contained in the concentrationQ(x,tut) yield-
ing the density of the particles which have in the past, i.e.,
prior to t, spent in@2a,a# a net durationt.

Note first that the diffusion equation~2.1! gives no clue as
to the length of time a particle spends inside@2a,a#. In-
deed, Brownian particles can travel along various paths, each
having a different value oft. In order to constructQ(x,t)
one adds up probabilities for all possible paths ending inx at
time t, @6# thus obliterating all information aboutt. It would
appear then that in order to build the exposure time control
into the classical Brownian motion one has to monitor the
behavior of the Brownian paths for allt8,t which will pre-
clude the description ofQ(x,tut) in terms of a simple partial
differential equation similar to Eq.~2.1!. Fortunately, this is
not the case. In fact,Q(x,tut) satisfies the clocked diffusion
equation@7# (uxy(z)51, x<z<y, and 0 otherwise!

]Q~x,tut!

]t
5D

]2Q~x,tut!

]x2
2u2aa~x!

]Q~x,tut!

]t
.

~2.2!

A rigorous derivation of~2.2! based on the Wiener integral
has been given in Ref.@7#. However, a simpler recipe for
constructing Eq.~2.2! is available. Indeed, a particle can
leave~enter! a phase volumedxdt either by diffusing to a
different location, as described by the first term on the right-
hand side ~rhs! of Eq. ~2.2!, or, provided it is inside
@2a,a#, by increasing its exposure timet. The second pos-
sibility accounts for the second term on the rhs of Eq.~2.2!.
We can putD51 in Eq. ~2.2! by introducing dimensionless
variablesx→x/L, t→t/t0 , andt→t/t0 , wheret05L2/D is

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/1457~6!/$10.00 1457 © 1996 The American Physical Society



the mean time it takes a Brownian particle to travel the dis-
tanceL. The scaled variables will be used unless stated oth-
erwise.

Next we will solve Eq.~2.2!, assuming that the light is
switched on att50 when the concentrationQ(x,0) is in
equilibrium, i.e., the particles are uniformly distributed
throughout the volume. Thus we have the initial condition.

Q~x,0ut!5d~t! ~2.3!

together with the boundary conditions

Q8~1,tut!5Q8~21,tut!50, ~2.4!

imposing zero flux at the ends of the test tube. In Eq.~2.3!
d(x) is the Diracd function and the prime denotes differen-
tiation with respect tox.

Note finally that the system we have chosen is in equilib-
rium at the lowest macroscopical level of description: the
constant concentrationQ(x,t) will remain unchanged at all
times. However, underlying this evolution~or rather the non-
evolution! of the total concentration is the microscopic
Brownian motion which carriers the particles across the test
tube. This is revealed if a more detailed description of the
system is provided. Indeed, let us return to the model in
which the particle’s color gets darker in proportion to the
exposure time. Assuming the particles are all white att50,
for t.0 we should see the dark color spread from the illu-
minated region until after a sufficiently long time the whole
test tube is colored black. This is the nonequilibrium evolu-
tion we seek to describe with the help of Eq.~2.2!.

III. EIGENFUNCTION EXPANSION FOR Q„x,tzt…

The Fourier transform ofQ(x,tut),

Q~x,tuV!5E
2`

`

Q~x,tut!exp~ iVt!dt ~3.1!

satisfies a diffusion equation~2.1! with an additional poten-
tial term iV u2bb(x) Q(x,tuV),

]Q~x,tuV!

]t
5

]2Q~x,tuV!

]x2
1 iVu2bb~x!Q~x,tuV!,

~3.2!

where

b[a/L. ~3.3!

Although non-Hermitian, the operator on the rhs of Eq.~3.2!
has a complete set of eigenfunctions for each value ofV.
Using these sets of expandQ(x,tuV), inverting the Fourier
transform~3.1!, and replacingV by iW we obtain the solu-
tion of Eq. ~2.2! satisfying conditions~2.3! and ~2.4!

Q~x,tut!5
1

2p (
n50

` E
2 i`

i` E exp@Wt2En~W!t#

3„1ufn~W!…fn~W,x!dW. ~3.4!

In Eq. ~3.4! ( f ug) denotes a scalar product without conjuga-
tion, (gu f )[*21

1 f (x)g(x)dx, andfn(W,x) are the normal-
ized solutions of the Sturm-Liouville problem

2fn9~W,x!1Wu2bb~x!fn~W,x!5En~W!fn~W,x!,

n50,1,2 . . . , ~3.5!

fn8~W,1!5fn8~W,21!50,

„fm~W!ufn~W!…5dmn .

Symmetric eigenstates in Eq.~3.4!, fn(W,x)5fn(W,2x),
are explicitly given by

fn~W,x!5F@En~W!,W,x#/N@En~W!,W#1/2, ~3.6!

where

F~E,W,x!5cos~k1b!cos@k~12x!#, 0,x,b

5cos@k~12b!#cos~k1x!, b,x,1,

~3.7!

k~E![E1/2,

k1~E,W![~E2W!1/2,

and

N~E,W!5~FuF!. ~3.8!

The corresponding eigenvaluesEn(W), n50,1,2 . . . , are
the roots of the transcendental equation

F~En ,W!50,

F~E,W![ktg@k~12b!#1k1tg~k1b!. ~3.9!

Next we evaluate the distribution in Eq.~3.4!.

IV. COMPLEX DEGENERACIES
AND AVOIDED CROSSINGS

To proceed, we require the properties ofEn(W) and
fn(W,x) in the entire complex plane of parameterW. It is
convenient to introduce a single valued functionE(W) de-
fined on a Riemann surfaceR such that, for a specifiedW,
En(W) is given by the value ofE(W) on the nth
(n50,1,2 . . . ,) sheetR. Apart from the boundary condi-
tion, Eq. ~3.5! looks remarkably like the stationary Schro¨-
dinger equation for a particle in a box with additional rect-
angular potential of magnitudeW. A quantum-mechanical
analogy is indeed helpful. As in quantum mechanics, the
‘‘levels’’ En(W) in Eq. ~3.5! cannot cross for real values of
W, but complex degeneracies are allowed. The nature of
these degeneracies can be understood as follows: on the
edges of the complexW plane, excluding the real axis,
(W5uWuexp(iF), uWu→`, FÞ0,p), the eigenvalues
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En(W) and eigenstatesFn(W,x) fall into two separate fami-
lies:

« j
~1!~W!5p2~2 j11!2/4b21W,

~4.1!

x j
~1!~x!5u2bb~x!b21/2cos@~2 j11!px/2b#,

j50,1,2 . . . ,

and

« j
~2!~W!5p2~2 j11!2/4~12b!2, j50,1,2 . . . ,

~4.2!
x j

~2!~x!

5$u212b~x!cos@~2 j11!p~11x!/2~12b!#

1ub1~x!cos@~2 j11!p~12x!/2~12b!#%/~12b!1/2.

The statesx j
(1) corresponding to levels« j

(1) are ‘‘quantized’’
between the edges of the complex ‘‘potential’’Wu2bb(x),
2a/L,x,a/L, their energies increasing withW. The states
x j
(2) corresponding to« j

(2) span the regions@21,2a/L# and
@a/L,1#, their energies independent ofW asuWu→`. When
applied forall values ofW, Eqs.~4.1! and~4.2! predict that
levels«m

(1) and«n
(2) would cross for realW5Wmn ,

Wmn5p2~2n11!2L2/4a22p2~2m11!2L2/4~L2a!2,

m,n50,1,2 . . . . ~4.3!

Of course,«m
(1) and«n

(2) are not valid eigenvalues for finite
values ofW. Rather, the crossings~4.3! are turned into
avoided crossings@8,9#. Associated with an avoided crossing
labeled (m,n) is a pair of complex conjugate points,Wmn

andWmn* where the eigenvaluesEm(W) andEn(W) become
degenerate, e.g.Em(Wmn)5En(Wmn)[Emn The eigenvalues
En(W), n50.1,2,3 are shown in Fig. 1 for realW and

b50.49 together with« i
(1) , i50,1,2 and« j

(2) , j50,1. Note
that the avoided crossings are best pronounced forn50 and
n51.

The valuesWmn and Emn must be found numerically as
the roots of two simultaneous transcendental equations,

F~Emn ,Wmn!50,
~4.4!

]F~Emn ,Wmn!

]E
50, m,n50,1,2,. . . ,

where F(E,W) is given by Eq. ~3.9!. Behavior of the
Em(W) is known from quantum mechanics@8,9#. Namely, in
the vicinity ofWmn we have

Em~W!2En~W!'~W2Wmn!
1/2. ~4.5!

Thus, the Riemann surfaceR of E(W) consists of an infinite
number of sheets joined pairwise at the branching points.
The first three sheets with branch cuts chosen to run to in-
finity parallel to the imaginary axis are shown in Fig. 2 for
ImW.0. Finally, using Eqs.~3.6! and ~3.7! we define the
eigenstates globally onR,

f~W,x![F@E~W!,W,x#/N@E~W!,W#. ~4.6!

As in quantum mechanics@8,9#, eigenstates have quartic root
singularities near complex branching points, so that for
W→Wmn we have

f~W,x!'~W2Wmn!
21/4. ~4.7!

V. SERIES REPRESENTATION FOR Q„x,tzt…

Now we can proceed with the evaluation of the exposure
time distribution~3.4!. Note first that since the exposure time
t is a non-negative quantity and cannot exceed the elapsed
time t, distribution Q(x,tut) must vanish identically for
t,0 andt.t. To show that this is indeed the case we start
with then50 term in the sum~3.4!. The integration contour

FIG. 1. Eigenvalues of the Sturm-Liouville problem~3.5! En ,
n50,1,2,3 vs ~real! W for a/L50.49 ~solid!. Also shown are
~dashed! «1

(1) , i50,1,2 and~dot-dashed! « j
(2) , j50,2, defined in

Eqs.~4.1! and ~4.2!.

FIG. 2. The three sheets of the Riemann surfaceR shown for
ImW.0. The sheets are joined at the branching pointsWmn ~small
circles! with cuts indicated by wavy lines. Also shown are the in-
tegration contours in Eq.~3.4! for n50,1,2 (C0 ,C1 ,C2) and the
loop contoursg00, g01, andg10 used in Eqs.~5.2!.
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C0 runs up the imaginaryW axis on the first sheet of the
Riemann surface~Fig. 2!. Let the branch cut lie to the right
of C0 as shown in Fig. 1 and consider firstt,0. As
uWu→`, on C0 we haveE0(W)→p2/4b21W. Inspection
of the exponent in Eq.~3.4! shows that the contour can be
closed in the right half-plane and then transformed into a set
of loop contours encircling the branching pointsW0n and
W0n* , n50,1,2 . . . , asshown in Fig. 2 forn50. Consider
next the second term in Eq.~3.5! and the contourC1 shown
in Fig. 2. On C1 , for uWu→`, we have E1(W)
5p2/4(12b)2 and again the contour can be transformed
into a single loop encirclingW00 andW00* but in the direction
opposite to that shown in Fig. 2. Repeating this analysis for
all terms in Eq.~3.4! we find two contours encircling each
pair of branching points in opposite directions so that the
sum is identically zero. Similarly, fort.t, all integration
contours in Eq.~3.4! can be closed in the left half-plane and
Q(x,tut) vanishes. For 0,t,t, however, those contours on
which En(W)→const for uWu→` can be closed in the left
half-plane, whereas those on whichEn(W)→const1Wmust
be closed in the right half of theW plane. As a result, for
0,t,t, Q(x,tut) is given by the sum of all integrals along
the loop contoursgmn , m,n50.1,2 . . . . Finally, evaluating
thed-function contributions arising because the integrands in
Eq. ~3.4! do not vanish foruWu→`, we arrive at the follow-
ing expression forQ(x,tut):

Q~x,tut!5d~t! (
n50

`

exp@2p2~2n11!2t/4~12b!2#

3~1uxn
~2!!xn

~2!~x!1d~t2t !

3 (
n50

`

exp@2p2~2N11!2t/4b2#

3~1uxn
~1!!xn

~1~x!1 (
m;n50

`

I mn~x,tut!,

0<t<t

0, otherwise, ~5.1!

where

I mn~x,tut![
i

2pEgmn

exp@Wt2E~W!t#

3„1uf~W!…f~W,x!dW. ~5.2!

Note that according to Eq.~4.7!, the integrand of Eq.~5.2!
has integrable root singularities at the branching pointsW00

andW 00* . Note also that the first and the second terms in Eq.
~5.1! describe the concentrations of those particles which
have not yet entered and left the region@2a/L,a/L#, and
had therefore spent either no time at all there or exactlyt,
respectively. For larget these concentrations are seen to de-
cay exponentially with their coordinate profiles given by the
lowest eigenfunctionsx0

(1)(x) andx0
(2)(x) in Eqs. ~4.1! and

~4.2!.

VI. LONG TIME BEHAVIOR OF Q„x,tzt…

Finally we investigate the asymptotic behavior of
Q(x,tut). The first term on the rhs of Eq.~2.2! leads to
diffusive spreading ofQ(x,tut) while the second term at-
tempts to propagate the part of the distribution contained in
the exposed region forward in thet coordinate. For very
short times, the diffusive term can be neglected. In the long
term limit, t@1, as Brownian particles forget their initial
positions the diffusive term is important. Next we will dem-
onstrate that in this limitQ(x,tut) looses its dependence on
x but retains a peak in thet coordinate, which moves toward
larger t ’s. For t@1, integrals~5.2! can be evaluated by the
steepest descent method@10# and a simple analysis shows
that the main contribution comes fromI 00(x,tut) with other
terms giving only exponentially small corrections. Trans-
forming g00 into a steepest descent contour we have

Q~x,tut!'@2ptu]2E0~W!/]W2u#21/2exp@Wt2E0~W!t#

3„1uf0~W!…f0~W,x!uW5W~t,t !, ~6.1!

where the~real! saddle pointW(t,t) is defined by

]E0@W~t,t !#

]W
5t/t. ~6.2!

The exponent in Eq.~6.1! reaches its maximum value at
W(t,t)50 and with the help of the relation

]E0~W!/]WuW505E
2b

b

f0
2~W!dxuW505a/L ~6.3!

we findQ(x,tut) peaked aroundt5(a/L)t. More precisely,
with the help of Eq.~6.1! we find both the mean exposure
time, t̄, and its variance,s, independent ofx.

t̄~ t !5@]E0~0!/]W#t5~a/L !t, ~6.4!

s~ t !5@ u]2E0~0!/]W2ut#1/2. ~6.5!

Thus in the long time limitQ(x,tut) tends to a homogeneous
distribution with a peak in thet coordinate propagating for-
ward in t with velocity equal to the ratio of the volume of
exposed region to the total volume of the system,b, while
the width of the peak increases ast1/2. Whereas the first
result is expected for a random walk in a finite volume, the
dependence ofs on the size onb is worth a further discus-
sion. Differentiating Eq.~6.3! with respect toW and calcu-
lating ]f0

2(W)/]WuW50 using the perturbation theory we
have

s~ t,b!52S (
m51

`
sin2~pmb!

~pm!4
t D 1/2. ~6.6!

The variances(t,b), shown in Fig. 3, vanishes forb50
andb51, when the exposure times for all particles equals
exactly 0 andt, respectively, while the maximum spread in
t, s'0.21t1/2 is achieved forb5 1

2 when the volume of the
exposed region is half the total volume of the system.

To provide a numerical test, we return to the original
~unscaled! x,t and t in Eq. ~2.2! and propagate an initial
Gaussian distributionQ(x,0ut)5exp(2at2), a5200, for
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b50.5 and different values of the diffusion coefficient. The
results (t/t050.01,0.1,1.0) are shown in Figs. 4~a!, and 4~b!,
and 4~c!, respectively, with the asymptotic form~6.1! seen to
be sufficiently accurate already fort/t0'1. To summarize, at
short times diffusion can be neglected and we see the par-
ticles inside@2a,a# increase their exposure times whereas
for the particles outside the region thet ’s remain unchanged
@Fig. 4~a!#. At intermediate times@Fig. 4~b!#, diffusive mix-
ing between the two regions smoothens the distribution
which still shows a tendency for largert ’s inside and close
to the exposed region. Finally, at large times the distribution
looses its coordinate dependence and becomes homogeneous
in x @Fig. 4~c!# . Note that the last result is not immediately
obvious, as at anyt one expects the particles currently inside
the exposed region to have somewhat largert ’s than those
outside it. However, in the large time limit,t/t0@1, any such
difference is lost against the rapidly growing width of the
distributions.

VII. CONCLUSIONS

To conclude, we have solved the problem of determining
the amount of time a Brownian particle spends in a specified
region of space. Somewhat surprisingly, having started with
purely classical problem~2.2! we were led to analyze the
level crossing problem usually associated with quantum me-
chanics. The reason is clear that in order to controlt we had
to go beyond the diffusion equation~2.1! which does not
distinguish between Brownian paths with different exposure
times. To solve the clocked Eq.~2.2! we required solutions
of Eq. ~3.2! for all ~complex! values ofW as the price for this
additional information. Predictions of the theory are easily
verified either experimentally, for example, using an en-
semble of light sensitive particles, or by trajectory simula-
tions with built-in exposure time control.

More generally, we have obtained a general recipe for
building in exposure time control into a class of diffusionlike
and Boltzmann-like equations by adding to the time deriva-
tive a termuV]/]t,

]

]t
→

]

]t
1uV

]

]t
, ~7.1!

whereV is some region of the coordinate or phase space.
This method has been shown to work also for the nonrela-
tivistic Schrödinger equation@7# and to lead to the so-called
Larmor times@1#. It remains to be seen whether meaningful
distributions can be obtained for the case electromagnetic
wave propagation discussed in Ref.@3#.
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