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Brownian motion with the exposure time control
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We solve a classical analog of the quantum traversal time problem. The classical diffusion equation is
modified to control the amount of time spent by a particle in a specified region of space. The “clocked”
diffusion equation is solved for an ensemble of Brownian particles confined in a closed volume. Long term
behavior of the exposure time distribution is analyzed. A general recipe for including time control into fieldlike
equations of motion describing evolution of a physical system is prop§S&063-651X96)11206-X

PACS numbegps): 05.40:+j, 73.40.Gk

I. INTRODUCTION whereD is the diffusion coefficient. For a given initial dis-
tribution Q(x,0), Eq.(2.1) allows one to determine the con-
Over the years, there has been considerable interest in tlentration Q(x,t) at any t>0. However, a more detailed
general problem of determining the amount of time,a  analysis may be required. Let a regipra,a] inside the
physical system, whose motion is described by partial differtube be exposed to the light or radiation. One can think of
ential equations rather than in terms of classical trajectorieseveral ways in which physical properties of the particles
spends in a specified region of spde Until recently, the may be affected by exposure to radiation or light. If, for
attention was focused on quantum mechanics, in particulaexample, a particle is coated in photoemulsion, the light will
on the tunneling time problerffor reviews, se¢l]). In Refs.  darken its color in proportion to the time it spends in the
[2,3] similar techniques were applied in order to understandlluminated region. For live bacteria moving chaotically in a
the occurrence of superluminal velocities in the propagatiotiquid medium the length of exposure to harmful radiation
of classical electromagnetic wavg4,5]. In this paper we  will determine whether a bacterium is healthy, sick, or dead.
extend the approach to classical stochastic systems and, in both bases, full statistical information about the state of
particular, to the case of Brownian motion. Common to allthe particle is contained in the concentrati@(x,t| 7) yield-
mentioned problems is the apparent absence of any informaag the density of the particles which have in the past, i.e.,
tion about~ in the initial (Schralinger, Maxwell, diffusion, prior tot, spent in[ —a,a] a net durationr.
etc) equation of motion. We will provide a simple general  Note first that the diffusion equatid@.1) gives no clue as
recipe for building in the exposuréraversal time control  to the length of time a particle spends insidea,a]. In-
and solve the “clocked” diffusion equation for Brownian deed, Brownian particles can travel along various paths, each
motion in a closed volume. The paper is organized as folhaving a different value of. In order to construcQ(x,t)
lows. In Sec. Il we introduce a clocked diffusion equationone adds up probabilities for all possible paths endirng dt
describing the distribution of exposure tim&(x,t|7), for  timet, [6] thus obliterating all information about It would
an ensemble of Brownian particles. In Sec. Il we formally appear then that in order to build the exposure time control
solve the equation by expandil@(x,t|7) in the eigenfunc- into the classical Brownian motion one has to monitor the
tions of the corresponding eigenvalue problem. In Sec. IVbehavior of the Brownian paths for afl<<t which will pre-
we investigate analytical behavior of the eigenvaligsand  clude the description d®(x,t|7) in terms of a simple partial
eigenfunctionsg,, . In Sec. V we demonstrate that the ana-differential equation similar to Eq2.1). Fortunately, this is
lytical properties ofE, and ¢, impose correct behavior on not the case. In facQ(x,t|7) satisfies the clocked diffusion
Q(x,t|7) and obtain for the latter a simple series representaequation[7] (6y,(z) =1, x<z=<y, and 0 otherwise
tion. In Sec. VI we use the steepest descent method to study

the long time behavior 0Q(x,t|7). We also provide a nu- aQ(x,t|7) . P*Q(x,t| 1) aQ(x,t|7)
merical test of the theory. Section VII contains our conclu- ot - ENZE 0—aa(X) ir
sions. (2.2
Il. EXPOSURE TIME CONTROL A rigorous derivation 0f(2.2) based on the Wiener integral
AND THE CLOCKED DIFFUSION EQUATION has been given in Ref7]. However, a simpler recipe for

constructing Eq.(2.2) is available. Indeed, a particle can
Consider an ensemble of Brownian particles confined in deave (entej a phase volumelxdr either by diffusing to a
(one dimensionalvolume[—L,L], e.g., put in a plugged different location, as described by the first term on the right-
test tube of a length 2. The concentration of particles, hand side(rhs of Eg. (2.2, or, provided it is inside
Q(x,t), satisfies the diffusion equatigs] [—a,a], by increasing its exposure time The second pos-
sibility accounts for the second term on the rhs of E42).
aQ(x,t) b 192Q(>2<,t) We can puD=1 in Eq.(2.2) by introducing dimensionless
ot X '

@D variablesx—x/L, t—t/ty, andr— 7/ty, whereto,=L2%/D is

1063-651X/96/5)/14576)/$10.00 54 1457 © 1996 The American Physical Society



1458 D. SOKOLOVSKI 54

the mean time it takes a Brownian particle to travel the dis- 12 ris
tanceL. The scaled variables will be used unless stated oth- QX t|7)=7— E f f exgWr—E, (W)t]
erwise. 2m =0 J =

Next we will solve Eq.(2.2), assuming that the light is X (1] b (W)) (W, X) AW (3.4)
switched on att=0 when the concentratio®(x,0) is in " me
equilibrium, i.e., the particles are uniformly distributed |n Eqg. (3.9 (f|g) denotes a scalar product without conjuga-
throughout the volume. Thus we have the initial condition. tion, (g|f)5f{lf(x)g(x)dx, and ¢,,(W,x) are the normal-

ized solutions of the Sturm-Liouville problem

Q(x,07)= (1) @3 — BIOW,X) + WO (%) (W,X) = En(W) (W, ),

together with the boundary conditions n=0,12..., (3.5

$n(W,1) = (W, ~1)=0,

Q' (1t =Q'(—1t|n)=0, (2.9

(¢m(W)| ¢n(W))= Omn-

imposing zero flux at the ends of the test tube. In 89 symmetric eigenstates in EG.4), ¢, (W,x)= ¢ (W,—X),
4(x) is the Diracé function and the prime denotes differen- .o explicitly given by

tiation with respect t«.

Note finally that the system we have chosen is in equilib- dn(W,x)=D[E,(W),W,x]/N[E,(W),W]¥2,  (3.6)
rium at the lowest macroscopical level of description: the
constant concentratio®(x,t) will remain unchanged at all Where
times. However, underlying this evolutidar rather the non- _ _
evolution of the total concentration is the microscopic ®(E,W,x)=cogk;B)cogk(1-x)], 0<x<p
Browniar) rr_lotion which_ carriers the pgrticles across the test =cogk(1—B)]Jcogk;x), B<x<l1,
tube. This is revealed if a more detailed description of the
system is provided. Indeed, let us return to the model in 3.7
which the particle’s color gets darker in proportion to the K(E)=EL2
exposure time. Assuming the particles are all whité=a0, '
fo_r t>0 we _should_see the darl_< _color sprea_d from the illu- kl(E,W)E(E—W)l’Z,
minated region until after a sufficiently long time the whole
test tube is colored black. This is the nonequilibrium evolu-gnd

tion we seek to describe with the help of Eg.2).
N(E,W)=(®|D). (3.8

lll. EIGENFUNCTION EXPANSION FOR Q(x,t|7) The corresponding eigenvalués,(W), n=0,12..., are

. the roots of the transcendental equation
The Fourier transform oQ(x,t|7), a

F(E,,W)=0,

Q(x,t|V):f:Q(x,tmexp(ivT)dT (3.1 F(E,W)=ktg[k(1-B)]+kitg(kiB). (3.9
Next we evaluate the distribution in E(.4).

satisfies a diffusion equatiof2.1) with an additional poten- V. COMPLEX DEGENERACIES
tial termiV 6_z5(x) Q(x,t|V), '

AND AVOIDED CROSSINGS

IQXEV)  PAXV) To pro_ceed, we require the properties Bf(W) ar_ld
= +iV 0_55(X)Q(x,t|V), &,(W,X) in the entire complex plane of paramei#t It is
convenient to introduce a single valued functiéfW) de-
fined on a Riemann surfadg such that, for a specified,
E,(W) is given by the value of&(W) on the nth
where (n=0,12...,) sheetR. Apart from the boundary condi-
tion, Eq. (3.5 looks remarkably like the stationary Schro
3.3 dinger equation for a particle in a box with additional rect-
' angular potential of magnitudé&/. A quantum-mechanical
analogy is indeed helpful. As in quantum mechanics, the
Although non-Hermitian, the operator on the rhs of 242 “levels” E.(W) in Eq. (3.5 cannot cross for real values of
has a complete set of eigenfunctions for each valu&.of W, but complex degeneracies are allowed. The nature of
Using these sets of expar@(x,t|V), inverting the Fourier these degeneracies can be understood as follows: on the
transform(3.1), and replacing/ by iW we obtain the solu- edges of the compleXV plane, excluding the real axis,
tion of Eq. (2.2 satisfying conditiong2.3) and (2.4) (W=|W|exp(®), |W|—», d#0,7), the -eigenvalues

at NG
(3.2

B=all.



54 BROWNIAN MOTION WITH THE EXPOSURE TIME CONTROL
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FIG. 1. Eigenvalues of the Sturm-Liouville problef®.5 E,,
n=0,1,2,3 vs(rea) W for a/L=0.49 (solid). Also shown are
(dashedl £§, i=0,1,2 and(dot-dashepi e{?, j=0,2, defined in
Egs.(4.1) and(4.2).

E,(W) and eigenstate® ,(W,x) fall into two separate fami-
lies:

efM (W)= 72(2) +1)2/4B%+ W,

(4.1)
XD (X)=6_ p(x) B~ Yc0§ (2] + 1) mxI2B],
j=0,12...,
and
81(2)(W) =m%(2j+1)%4(1-B)%j=0,12. ..,
(4.2
X2 (x)

={0_1_p(x)cog (2] +1)m(1+x)/2(1-B)]
+0p1(x)c0g (2] + 1) m(1—x)/2(1—B)]H (1- B)*2

The states{") corresponding to levels{™ are “quantized”
between the edges of the complex “potentidl/é_ ;45(X),
—alL<x<all, their energies increasing withi. The states
x{? corresponding te(* span the regiong—1,—a/L] and
[a/L,1], their energies independent ¥f as|W|— . When
applied forall values ofW, Egs.(4.1) and(4.2) predict that
levelse(M) and&(® would cross for realW=W,,,,

W= 72(2n+1)2L%/4a%— 7?(2m+1)?L2/4(L — a)?,
m,n=0,12.... (4.3

Of course,c(M) and&(? are not valid eigenvalues for finite

values of W. Rather, the crossing&t.3) are turned into

1459

FIG. 2. The three sheets of the Riemann surf&shown for
ImMW>0. The sheets are joined at the branching poiits, (small
circles with cuts indicated by wavy lines. Also shown are the in-
tegration contours in Eq3.4) for n=0,1,2 (C,,C,,C,) and the
loop contoursyqg, Y01, @andyyo used in Eqs(5.2).

B=0.49 together witte™™, 1=0,1,2 ande{?, j=0,1. Note
that the avoided crossings are best pronounced fod and
n=1.

The valuesW,,, and &, must be found numerically as
the roots of two simultaneous transcendental equations,

F(&mnsWmn) =0,
4.4)

aF(gmnann)

E =0, mn=0,1,2,...,

where F(E,W) is given by Eg.(3.9. Behavior of the
E(W) is known from quantum mechanig8,9]. Namely, in
the vicinity of W,,, we have

Em(W) —E(W)~(W— Wmn)llz- 4.5

Thus, the Riemann surfade of £(W) consists of an infinite
number of sheets joined pairwise at the branching points.
The first three sheets with branch cuts chosen to run to in-
finity parallel to the imaginary axis are shown in Fig. 2 for
ImW=>0. Finally, using Eqs(3.6) and (3.7) we define the

eigenstates globally oR,
d(W,xX)=P[E(W),W,X]/N[E(W),W]. (4.6)

As in guantum mechanid$8,9], eigenstates have quartic root
singularities near complex branching points, so that for
W—-W,,, we have

BOW, )~ (W= W) ™4 @7

V. SERIES REPRESENTATION FOR Q(x,t|7)

Now we can proceed with the evaluation of the exposure

avoided crossingl8,9]. Associated with an avoided crossing time distribution(3.4). Note first that since the exposure time

labeled fn,n) is a pair of complex conjugate pointsy,,,
andW,.;, where the eigenvalues,,(W) andE,(W) become
degenerate, e.&(Wmnn) = En(Wmn) =Emn The eigenvalues
E,(W), n=0.1,2,3 are shown in Fig. 1 for redV and

7 iS @ non-negative quantity and cannot exceed the elapsed
time t, distribution Q(x,t|7) must vanish identically for
7<0 and7>t. To show that this is indeed the case we start
with then=0 term in the sun{3.4). The integration contour
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C, runs up the imaginaryV axis on the first sheet of the VI. LONG TIME BEHAVIOR OF = Q(x,t|7)
Riemann surfacéFig. 2). Let the branch cut lie to the right
of Cy as shown in Fig. 1 and consider first<0. As
|W|—o, on Cq we haveEy(W)— 7%/482+W. Inspection
of the exponent in Eq(3.4) shows that the contour can be
closed in the right half-plane and then transformed into a s
of loop contours encircling the branching pointg,, and
W§,, n=0,12 ..., asshown in Fig. 2 forn=0. Consider
next the second term in E¢B.5 and the contou€; shown

in Fig. 2. On C,, for |W|—®, we have E{(W)

Finally we investigate the asymptotic behavior of
Q(x,t|7). The first term on the rhs of Eq2.2) leads to
diffusive spreading ofQ(x,t|7) while the second term at-
tﬁmpts to propagate the part of the distribution contained in
e : . .
the exposed region forward in the coordinate. For very
short times, the diffusive term can be neglected. In the long
term limit, t>1, as Brownian particles forget their initial
positions the diffusive term is important. Next we will dem-
. onstrate that in this limiQ(x,t| 7) looses its dependence on
- 772/4(,1_'3)2 and again the contour can be trgnsfgrmedx but retains a peak in thecoo|rciinate, which mF:)ves toward
into a single loop encirclingVoo and W, but in the direction |5 g6 s For t>1, integrals(5.2) can be evaluated by the
opposite to that shown in Fig. 2. Repeating this analysis forSteepest descent methpt] and a simple analysis shows
all terms in Eq.(3.4) we find two contours encircling each that the main contribution comes frofg(x,t|7) with other
pair of branching points in opposite directions so that theLerms giving only exponentially small cyorrections. Trans-

sum is id_entically zero. Similarly, _fon->t, all integration forming e iNto a steepest descent contour we have
contours in Eq(3.4) can be closed in the left half-plane and

Q(x,t|7) vanishes. For & <t, however, those contours on  Q(x,t| 7)~[ 2t| 92Eq(W)/IW?| ]~ Y2exg Wr— Eqo(W)t]
which E,(W)— const for|W|—c can be closed in the left

half-plane, whereas those on whigh(W)— constt W must X (1] go(W)) (W, X) lw=w(7,1)» (6.)
be closed in the right half of thev/ plane. As a result, for
0<r<t, Q(x,t|7) is given by the sum of all integrals along
the loop contoursy,,,, m,n=0.12 .. .. Finally, evaluating IE[W(T,1)]
the s-function contributions arising because the integrands in W
Eq. (3.4) do not vanish fotW|— <, we arrive at the follow-

ing expression foQ(x,t[7): The exponent in Eq(6.1) reaches its maximum value at
W(t,7) =0 and with the help of the relation

where the(rea) saddle pointW(r,t) is defined by

7/t. (6.2

— _ 2 2 _ 2 B
Quxtln)=4(n) 2 exil—w*(2n+1)%/4(1- )] TE (W) W]y o= f FW)dxlw_o=alL (6.3
-B
(2)y,,(2) _
X Dxn () +8(7=1) we find Q(x,t|7) peaked around=(a/L)t. More precisely,
o with the help of Eq.(6.1) we find both the mean exposure
X >, exd — m2(2N+1)2t/42] time, 7, and its variancey, independent ok.
n=0
" 7(t)=[JE,(0)/dW]t=(a/L)t, (6.4
(y, (1
X(1|Xn )Xn (X)+m;:O Imn(xat|7-)1 O'(t)=[|(92E0(0)/(9W2|t]1/2. (65)
o<r<t Thus in the long time limiQ(x,t| 7) tends to a homogeneous
) distribution with a peak in the coordinate propagating for-
0, otherwise, (5.1 ward in = with velocity equal to the ratio of the volume of
exposed region to the total volume of the systggn,while
where the width of the peak increases &% Whereas the first
result is expected for a random walk in a finite volume, the
. dependence of on the size orB is worth a further discus-
Lmn(X,t| 7)= L ex] Wr— E(W)t] sion. Differentiating Eq(6.3) with respect toW and calcu-
27 ) yion lating &¢S(W)/(9W|W:0 using the perturbation theory we
have
X (1 p(W)) (W, x)dW. (5.2
 sirt(rmp) |
Note that according to Eq4.7), the integrand of Eq(5.2) o(t.p)=2 mz=l (mm)* o 69

has integrable root singularities at the branching poiwg

and7,. Note also that the first and the second terms in EqThe varianceo(t,3), shown in Fig. 3, vanishes fo8=0
(5.1) describe the concentrations of those particles whictand 8=1, when the exposure times for all particles equals
have not yet entered and left the regipra/L,a/L], and exactly O and, respectively, while the maximum spread in
had therefore spent either no time at all there or exastly 7, o~0.21t'? is achieved for3=31 when the volume of the
respectively. For large these concentrations are seen to de-exposed region is half the total volume of the system.

cay exponentially with their coordinate profiles given by the To provide a numerical test, we return to the original
lowest eigenfunctiong{M(x) and x{?)(x) in Egs.(4.1) and  (unscaledl x,t and 7 in Eq. (2.2) and propagate an initial
(4.2. Gaussian distributionQ(x,0[t) =exp(—a7?), a=200, for
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FIG. 3. Dependence of the varianceon g=alL.

B=0.5 and different values of the diffusion coefficient. The
results (/t;=0.01,0.1,1.0) are shown in Figsa}, and 4b),
and 4c), respectively, with the asymptotic for(6.1) seen to
be sufficiently accurate already foity~1. To summarize, at
short times diffusion can be neglected and we see the par- 4
ticles inside[ —a,a] increase their exposure times whereas
for the particles outside the region this remain unchanged
[Fig. 4@)]. At intermediate time$Fig. 4(b)], diffusive mix- 05
ing between the two regions smoothens the distribution
which still shows a tendency for largets inside and close

to the exposed region. Finally, at large times the distribution 70
looses its coordinate dependence and becomes homogeneous L ' .

in x [Fig. 4(c)] . Note that the last result is not immediately 05 -025 0 025 05
obvious, as at anyyone expects the particles currently inside X

the exposed region to have somewhat largisrthan those
outside it. However, in the large time limitity>1, any such
difference is lost against the rapidly growing width of the
distribution o.

FIG. 4. Contour plots 0Q(x,t|7) att=1 for (a) t/t,=0.01, (b)
t/ty=0.1, and(c) t/ty=1.0, wheret,=L?/D. The Brownian par-
ticles are confined to the intervigt- 0.5,0.5, the exposed region is
—0.25<x<0.25. Initial (unnormalized distribution is a Gaussian,

VII. CONCLUSIONS Q(x,0/7) =exp(—2007?).

To conclude, we have solved the problem of determining More generally, we have obtained a general recipe for
the amount of time a Brownian patrticle spends in a specifieduilding in exposure time control into a class of diffusionlike
region of space. Somewhat surprisingly, having started witand Boltzmann-like equations by adding to the time deriva-
purely classical problen2.2) we were led to analyze the tive a terméfqdl/dr,
level crossing problem usually associated with quantum me-
chanics. The reason is clear that in order to contrale had Jg d J 21
to go beyond the diffusion equatiof2.1) which does not g Ty 7.0
distinguish between Brownian paths with different exposure
times. To solve the clocked E¢R.2) we required solutions where() is some region of the coordinate or phase space.
of Eq. (3.2 for all (complex values ofW as the price for this This method has been shown to work also for the nonrela-
additional information. Predictions of the theory are easilytivistic Schralinger equatiorj7] and to lead to the so-called
verified either experimentally, for example, using an en-Larmor times[1]. It remains to be seen whether meaningful
semble of light sensitive particles, or by trajectory simula-distributions can be obtained for the case electromagnetic

tions with built-in exposure time control. wave propagation discussed in RES].
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